Real inflection points of real hyperelliptic curves

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing real inflection points of cubic algebraic curves

Shape modeling using planar cubic algebraic curves calls for computing the real inflection points of these curves since inflection points represents important shape feature. A real inflection point is also required for transforming projectively a planar cubic algebraic curve to the normal form, in order to facilitate further analysis of the curve. However, the naive method for computing the inf...

متن کامل

Inflection Points on Real Plane Curves Having Many Pseudo-Lines

A pseudo-line of a real plane curve C is a global real branch of C(R) that is not homologically trivial in P(R). A geometrically integral real plane curve C of degree d has at most d− 2 pseudo-lines, provided that C is not a real projective line. Let C be a real plane curve of degree d having exactly d − 2 pseudo-lines. Suppose that the genus of the normalization of C is equal to d− 2. We show ...

متن کامل

Cryptographic Aspects of Real Hyperelliptic Curves

In this paper, we give an overview of cryptographic applications using real hyperelliptic curves. We review previously proposed cryptographic protocols and discuss the infrastructure of a real hyperelliptic curve, the mathematical structure underlying all these protocols. We then describe recent improvements to infrastructure arithmetic, including explicit formulas for divisor arithmetic in gen...

متن کامل

Imaginary automorphisms on real hyperelliptic curves

A real hyperelliptic curve X is said to be Gaussian if there is an automorphism α : XC → XC such that α = [−1]C ◦ α, where [−1] denotes the hyperelliptic involution on X. Gaussian curves arise naturally in several contexts, for example when one studies real Jacobians. In the present paper we study the properties of Gaussian curves and we describe their moduli spaces. MSC 2000: 14H15, 14H37, 14P...

متن کامل

A Density Result for Real Hyperelliptic Curves

Let {∞+,∞−} be the two points above ∞ on the real hyperelliptic curve H : y = (x − 1) ∏2g i=1(x− ai). We show that the divisor ([∞ ]− [∞−]) is torsion in Jac J for a dense set of (a1, a2, . . . , a2g) ∈ (−1, 1). In fact, we prove by degeneration to a nodal P that an associated period map has derivative generically of full rank.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2019

ISSN: 0002-9947,1088-6850

DOI: 10.1090/tran/7721